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We consider swollen lamellar phases in binary systems of amphiphile and solvent. We argue that the abrupt
swelling of lamellar phases is the result of a first-order unbinding transition. Employing a self-consistent-field
theory to examine a similar system of homopolymer-diblock blends, we demonstrate that the unbinding here is
indeed first order by locating the associated line of preunbinding transitions. Along this line, two lamellar
phases with different wavelengths coexist.@S1063-651X~96!51107-4#

PACS number~s!: 61.25.Hq, 64.70.Ja, 64.70.Md, 64.60.2i

One of the most unusual features exhibited by some bi-
nary mixtures of amphiphile and water is the extent to which
a phase of bilayers of the former can be swollen by the latter.
For example@1#, in the system of then-akyl polyglycol ether
C12E5 and water, the wavelength of the lamellar phase can
exceed 300 nm. It is surprising that the lamellar phase re-
mains a distinct, ordered phase while consisting of 98.8%
water. A second surprising feature of this system is the
abruptness of the transition to this swollen phase from one
with a wavelength on the order of 7 nm, a particularly small
distance when it is compared to the 3.74 nm thickness of the
bilayer itself. A result of the abrupt transition is that the
lower boundary of the lamellar phase in the temperature,
concentration plane is almost horizontal~see Fig. 1!.

As discussed below, analysis of the unbinding transition
in this system is complicated by the fact that the role of
fluctuations is essential; without them, the long-ranged van
der Waals attraction between amphiphile bilayers would pre-
vent any unbinding at all. Currently, the nature of the tran-
sition brought about by these fluctuations is not known
@2–4#. Even the form of the appropriate Landau expansion in
a single order parameter is not settled@5–7#.

Because an understanding of the results of a mean-field

analysis is a prerequisite for the solution of the full problem,
we have examined this transition in a binary system which is
well characterized, employing a theory which is well under-
stood. In particular, we have investigated a blend of diblock
copolymer and homopolymer employing self-consistent-field
theory. That such systems can exhibit an unbinding transition
within the purview of a mean-field theory was recently
shown by Matsen@8,9#.

We considered an incompressible mixture of flexible,
symmetric,AB diblock copolymers of polymerization index
N and flexibleA homopolymers of the same index.A and
B monomers of equal statistical segment lengtha interact
with a contact potential whose strength is given by the Flory
parameterx, which is inversely proportional to temperature
T. We have employed self-consistent-field theory in the
grand canonical ensemble@8#, and solved the self-consistent
equations numerically after expanding them in a complete
Fourier series@10# in one spatial coordinate. The phase dia-
gram of this system is dominated by a disordered fluid phase,
and a lamellar phase consisting of bilayers of copolymer
with homopolymer between them. We find that for values of
1/(xN) less than 1/11.767, the addition ofA homopolymer,
or equivalently the decrease in volume fractionf of copoly-
mer, has only a small effect on the period of the lamellar
phase, and eventually brings about a first-order transition be-
tween the lamellar phase of short wavelength and the disor-
dered phase. There is a region of coexistence between these
phases in theT, f plane. For 1/(xN) greater than 1/11.767,
however, the addition of homopolymer swells the bilayers
continuously producing a line of complete unbinding transi-
tions@11# which extends to a Lifshitz critical point. The tran-
sition between these two behaviors is quite abrupt, just as
was found by Matsen for a similar system of slightly asym-
metricAB diblocks andA homopolymers of the same index
of polymerization@9#.

This description of the unbinding transition is incomplete,
however. As one approaches the unbinding transition along
the line of coexistence between lamellar and disordered
phases, one should be able to distinguish between two pos-
sible scenarios. In the first, denoted critical unbinding@12#,
the distance between bilayers in the lamellar phase,l in-
creases continuously as the temperature approaches the un-
binding temperatureTu . Because the volume fraction of co-
polymer is inversely related to the spacingl , the difference
between copolymer volume fractions in the disordered and

FIG. 1. Phase diagram of water C12E5 system. The lamellar
phase is denotedLa , while isotropic disordered phases are denoted
L1 , L2 , andL3 . TheL1 phase is a micellar fluid;L3 is the sponge
phase. Regions without labels are of two-phase coexistence~after
Ref. @1#!.
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lamellar phases vanishes continuously with temperature. In
the second scenario, first-order unbinding, the distance be-
tween bilayers jumps discontinuously at the unbinding tem-
peratureTu from some finite value to infinity. Consequently
the difference between copolymer volume fractions in disor-
dered and lamellar phases vanishes discontinuously. If this is
the case, we expect, in analogy to first-order wetting transi-
tions @13#, a line of first-order preunbinding transitions to
emerge from this transition, i.e., a line which separates two
lamellar phases of different spacingl . It should end in a
critical point. The first-order unbinding transition atTu is a
critical end point.

We have studied carefully the phase diagram in the vicin-
ity of the unbinding temperature, considering disordered,
lamellar, and hexagonal phases. The hexagonally perforated
lamellar phase@8,9# was not considered as it is not observed
in the amphiphile, water system. We have located a preun-
binding line. It follows that for this polymer system the un-
binding transition is indeed first order. This result has been
checked by employing up to 40 basis functions, obtaining an
accuracy of the free energy of 1 part in 108. The phase
diagram is shown in Fig. 2 in the 1/(xN), f plane. Like the
prewetting line@14#, the preunbinding line is quite short; it
originates at the unbinding transition,xN511.767, and ends
at the preunbinding critical point,xN511.339. At the
former, the lamellar spacing of the bound phase is
l52.39aN1/2, while at the latterl52.70aN1/2.

The characteristic features of the phase diagram can be
obtained without solution of the full mean-field theory by
considering a Landau expansion of the free energy. By anal-
ogy with wetting transitions in systems with short-ranged
forces@13#, we assume an expansion of the form

F~ l !5F~0!1a~T!exp~2 l /D !1b exp~22l /D !

1c exp~23l /D !1 . . . , ~1!

wherel is the lamellar spacing andD is some length scale,
characterizing the width of each bilayer. For this form of the
free energy withb negative andc positive, one finds a first-
order unbinding transition at the temperatureTu given im-
plicitly by a(Tu)5b2/4c. At this point, the lamellar spacing
jumps froml 05D ln(2c/b), its value in the bound phase, to
infinity. For T.Tu , there is a complete unbinding in which,
for sufficiently small chemical potentialm, the lamellar
spacing diverges according tol;D ln(1/m), with m mea-
sured from the transition. Near the line of complete unbind-
ing but within the lamellar phase, one encounters the preun-
binding line at which lamellar phases with long and short
periods coexist. As the transition temperatureTu is ap-
proached from above along the preunbinding line, the lamel-
lar spacing diverges asl;2D ln(T2Tu), leading to a hori-
zontal lower boundary of the lamellar phase. All these
predictions are in agreement with the results of the full self-
consistent-field theory.

Of course, a critical unbinding transition is also possible
and would occur ifa(T) in Eq. ~1! were to change sign at
Tu , with b andc positive. If Tu were approached from be-
low on the coexistence line between the lamellar and the
disordered phase, the lamellar spacing would diverge as
l;D ln(2b/uau) with a;T2Tu . Equivalently,
T2Tu;2exp(2 l /D), so that the lower boundary of the
lamellar phase would be flat as it unbinds.

Our calculation does not include the attractive long-
ranged van der Waals interaction which exists between bi-
layers of amphiphile, nor does it include the effect of fluc-
tuations. It is well known that these fluctuations produce a
repulsive interactions between bilayers@15# which decreases
as l22. At large separations, this repulsion will dominate the
van der Waals attraction, which decreases asl24 for large
separations, and can bring about an unbinding transition.
Whether it is a continuous or first-order one is not known.
The effect of fluctuations on the unbinding of two mem-
branes was considered by Lipowsky and Leibler@12#, who
analyzed an effective interface Hamiltonian by a functional
renormalization group transformation. They found that the
transition was continuous withl}(Tu2T)2c, andc51. Be-
cause the density of amphiphile,f, is proportional tol21,
this result for the unbinding of two membranes, if applicable
to the lamellar phase of an infinite number of membranes,
would imply that the difference in density between the dis-
ordered and lamellar phases would decrease linearly with
Tu2T. The lower boundary of the lamellar phase would be a
straight line of nonzero slope. This is not the case in the
experimental results of Fig. 1. More recently, Lipowsky@4#
has argued that for sufficiently strong attractive potentials,
the unbinding transition of two membranes can be first order
even in the presence of fluctuations. The effect of fluctua-
tions on a stack of three membranes was examined by Netz
and Lipowsky@3# employing Monte Carlo simulation. They
found a value ofc'0.91 which, if applicable to the lamellar
phase, would produce a lower boundary of the lamellar

FIG. 2. Phase diagram of theAB-copolymer,A-homopolymer
system. The possible occurrence of a hexagonally perforated lamel-
lar phase is ignored. The line of complete unbinding is shown
dashed and ends at a Lifshitz point, marked with a diamond. Be-
yond it is a line of second-order transitions from the disordered
phaseD to the lamellar phaseLa . The coexistence region between
two lamellar phases ends at a critical point, also denoted by a dia-
mond. Regions without labels are of two-phase coexistence.
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phase which becomes flat very near the critical point. There
are no comparable results for an infinite stack, as in a lamel-
lar phase.

A further effect of fluctuations is that they are expected to
prevent the lamellar phase from unbinding completely@16#.
This is because the orientational order of the lamellar phase
can no longer be sustained when the distance between lamel-
lae becomes of the order of the persistence length of the
bilayers. At this point a first-order transition to a disordered
but structured phase occurs, which is commonly referred to
as theL3 or sponge phase. This converts the first-order un-
binding transition from a critical end point to a triple point.
Here the disordered phase coexists with two bound lamellar
phases, one of short period, and the other of long period, of
the order of the persistence length.

Finally, our calculation ignores the stabilization of the
disordered phase by the formation of micelles. The addi-
tional entropy provided by the formation of these structures

enlarges the region of stability of the disordered phase, as
can be seen by comparing the experimental phase diagram of
Fig. 1 with our calculated Fig. 2. Because the phase diagram
results from a comparison of the free energies of all phases,
it is conceivable that the entire preunbinding line is pre-
empted by the disordered phase. Even were this so, an up-
ward curvature in the lower phase boundary of the lamellar
phase would be a remnant of the preunbinding line. But the
outlook may be more positive. The fact that the prewetting
line has been observed@14# in spite of similar difficulties as
to its short length, and that coexistence of lamellar phases
has been observed@17#, encourages us to hope that the pre-
unbinding line can also be detected.

We are indebted to Roland Netz for many informative
conversations and to Mark Matsen for making available to us
a copy of Ref.@8# prior to publication. This work was sup-
ported in part by the National Science Foundation under
Grant No. DMR9220733.
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